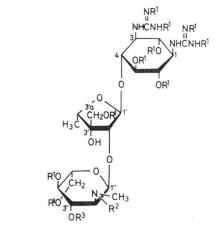
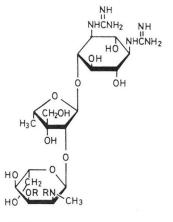
Communications to the editor


SYNTHESIS OF 3''-EPI-DIHYDROSTREPTOMYCIN ACTIVE AGAINST RESISTANT BACTERIA


Sir:

Streptomycin is inactivated by enzymes of resistant bacteria, adenylylating^{1,2)} or phosphorylating^{8,4)} the 3''- or the 6-hydroxyl group of the antibiotic. Previously synthesized 3''-deoxydihydrostreptomycin^{5,6)} had been shown to be active against resistant strains producing 3''modifying enzymes. This paper describes the synthesis and the antibacterial activity of 3''-epidihydrostreptomycin (3''-epi-DHSM) in order to see the effect of epimerization of the 3''-hydroxyl group in dihydrostreptomycin (DHSM) against DHSM-resistant strains.

2''-N-Benzyloxycarbonyl-DHSM⁷ monosulfate (1) was treated with acetic anhydride and sodium acetate (80°C, 18 hours) with vigorous stirring to give tetra- N^{G} -acetyl-2,5,6,3'a,3'',4'', 6'' - hepta - O - acetyl - 2'' - N- benzyloxycarbonyl-

dihydrostreptomycin (2) (98%), $[\alpha]_{\rm p}^{23} - 72^{\circ}$ (c 1, chloroform); ¹H NMR (CDCl₃): δ 1.20 (3H d, CCH₃), 1.95 (6H), 1.99 (3H), 2.03 (3H), 2.09 (6H) and 2.19 (15 H) (each s, Ac), 2.87 (3H s, NCH₃). Hydrogenolysis (Pd black, H2 was bubbled for 3 hours) of the N-protecting group of 2 in ethanol gave the de-N-benzyloxycarbonyl derivative (3) (98%), $[\alpha]_{D}^{23} - 82^{\circ}$ (c 1, chloroform); ¹H NMR (CDCl₃): δ 1.20 (CCH₃), 1.97, 2.00, 2.08 (6H), 2.10, 2.12, 2.14, 2.16, 2.18, 2.21 and 2.22 (each s, 3H except for 2.08, Ac), 2.48 (3H s, NCH₃), 9.06 and 9.27 (each 1H d, J9 Hz, NGH); Found (Calcd. for C₄₃H₆₃N₇O₂₃): C 49.17 (49.37), H 6.09 (6.07), N 9.12 (9.37). To a solution of 3 in ethanol maintained at 25°C, carbon dioxide was introduced until neutral (pH \sim 7), and the solution was kept at the temperature for 35 hours. Concentration followed by chromatography of the residue gave the 3"-de-O-acetyl derivative (4) (43%), $[\alpha]_{\rm D}^{23}$ -71° (c 1, chloroform); ¹H NMR (CDCl₃): $\delta 2.0 \sim 2.3$ (30H, Ac), 2.51 (3H s, NCH₃). Treatment of 4 with benzyl chloroformate gave the 2"-

	R1	\mathbb{R}^2	R ⁸
1	Н	$CO_2CH_2C_6H_5$	н
2	Ac	$CO_2CH_2C_6H_5$	Ac
3	Ac	Н	Ac
4	Ac	н	н
5	Ac	$CO_2CH_2C_6H_5$	H
6	Ac	$CO_2CH_2C_6H_5$	SO ₂ CH ₃
7	Н	$CO_2CH_2C_6H_5$	SO ₂ CH ₃

	R, R
8	>C=0
3''-epi-DHSM	Н, Н

	3'' <i>-epi-</i> DHSM DHSM		3''-epi- DHSM DHSM
Staphylococcus aureus FDA 209P	3.12 3.12	Escherichia coil K-12 C600 R135 ^f)	3.12 50
" " Smith " " APO1 ^a)	$\begin{array}{rrrr} 3.12 & 1.56 \\ 12.5 & 6.25 \\ >100 & >100 \end{array}$	Mycobacterium smegmatis ATCC 607 Klebsiella pneumoniae PCI 602	0.78 0.78 3.12 3.12
 <i>"epidermidis</i> 109^a) <i>Micrococcus flavus</i> FDA 16 <i>"luteus</i> PCI 1001 	>100 > 100 6.25 3.12 0.78 1.56	" " 22#3038 ^d , e) Shigella dysenteriae JS 11910	25 > 100 6.25 6.25
Bacillus subtilis PCI 219 " " NRRL B-558 Corynebacterium bovis 1810	0.78 0.78 1.56 3.12 3.12 3.12	Salmonella typhi T-63 Proteus vulgaris OX19 "rettgeri GN311	0.78 25 1.56 1.56 1.56 1.56
Escherichia coli K-12	1.56 $1.566.25 > 100$	Serratia marcescens " sp SOU	12.5 6.25 6.25 >100
" " J5 R11–2°) " " ML1629°)	3.12 3.12 1.56 100	Providencia sp Pv16 ^g) # sp 2991 ^g) Pseudomonas aeruginosa A3	$\begin{array}{ccc} 6.25 & 25 \\ 50 & >100 \\ 3.12 & 12.5 \end{array}$
" " ML1630 " " ML1410 " " " R81 ^c)	3.12 > 100 3.12 $3.1212.5 > 100$	" " No. 12 " " H9°)	25 25 >100 >100
" " LA290 R55 ^{a)} " " W677	3.12 3.12 0.78 0.78	<i>n n</i> TI-13° ⁰ <i>n n</i> GN315 ^{b)} <i>n n</i> 99 ^{f)}	$\begin{array}{ccc} 50 &> 100 \\ 25 & 50 \\> 100 &> 100 \end{array}$
<i>" JR66/W677^d, e)</i>	12.5 >100	" " B-13	50 >100

Table 1. Minimal inhibitory concentration (μ g/ml) of 3''-epi-dihydrostreptomycin and dihydrostreptomycin.

Resistance mechanism: ^{a)} AAD(4'), ^{b)} AAC(6'), ^{e)} APH(3')-I, ^{d)} AAD(2''), ^{e)} APH(3')-II, ^{f)} AAC(3), ^{g)} AAC(2').

N-benzyloxycarbonyl-3"-hydroxy derivative (5) (91%), $[\alpha]_{D}^{23} - 71^{\circ}$ (*c* 1, chloroform); ¹H NMR $(CDCl_s)$: δ 3.02 (3H s, NCH_s). Sulfonylation of 5 with methanesulfonyl chloride in pyridine gave the 3"-O-methylsulfonyl derivative (6) (91%), $[\alpha]_{\rm D}^{23} - 72^{\circ}$ (c 1, chloroform); ¹H NMR (CDCl₃): δ 2.73 (3H s, Ms), 3.00 (3H s, NCH₃); Found (Calcd. for C₅₀H₆₉N₇O₂₆S): C 49.09 (49.38), H 5.64 (5.72), N 7.76 (8.06), S 2.73 (2.64). Treatment of 6 with 0.2 M sodium methylate in methanol (room temperature, 1.5 hours) gave the de- $N^{\rm G}$, O-acetyl derivative (7) (92%), $[\alpha]_{\rm D}^{23} - 66^{\circ}$ (c 0.5, water); ¹H NMR (D₂O): δ 1.20 (CCH₃), 3.01 and 3.06 (each s, 3H in total, NCH_3), 3.16 (3H s, Ms). Attempted removal of the benzyloxycarbonyl group of 7 by hydrogenolysis (atm. pressure of H₂, Pd black, room temperature, 30 minutes) unexpectedly gave 2"-N,3"-O-carbonyl-3"-epi-dihydrostreptomycin (8) as the major product (~63%) (IR: 1740 cm⁻¹), which, without purification, was hydrolyzed with aqueous barium

hydroxide to cleave the *cis*-fused cyclic carbamate. The crude mixture obtained was chromatographed on a column of Amberlite CG-50 resin (NH₄⁺ form) using a gradient of $1 \sim 9\%$ annmonium carbonate to give the desired 3''-*epi*-DHSM as the 3/2 carbonate (36%), $[\alpha]_{D}^{23} - 80^{\circ}$ (*c* 1, water). The structure was proved by comparison with the identical compound prepared by an unambiguous multistep method⁸). Identity was established by chromatographic mobilities, ¹H [D₂O, pD ~9, ∂ 2.81 (t, H-2''), 5.08 (d, H-1''); $J_{1'',2''}=J_{2'',3''}=$ 4 Hz] and ¹³C NMR spectra and antibacterial activity.

3''-Epi-dihydrostreptomycin showed strong activity (Table 1) against sensitive and resistant bacteria for DHSM, and its activity seems to be comparable with that of 3''-deoxydihydrostreptomycin⁵⁾. It should be stressed that this is a novel example that epimerization of the hydroxyl group give birth to a potent derivative.

Tsutomu Tsuchiya Shuichi Sakamoto Tetsuro Yamasaki Sumio Umezawa

Institute of Bioorganic Chemistry, 1614 Ida, Nakahara-ku, Kawasaki 211 Japan

HAMAO UMEZAWA

Institute of Microbial Chemistry, Kamiosaki, Shinagawa-ku, Tokyo 141, Japan

(Received February 22, 1982)

References

- UMEZAWA, H.; S. TAKASAWA, M. OKANISHI & R. UTAHARA: Adenylylstreptomycin, a product of streptomycin inactivated by *E. coli* carrying R factor. J. Antibiotics 21: 81~82, 1968 TAKASAWA, S.; R. UTAHARA, M. OKANISHI, K. MAEDA & H. UMEZAWA: Studies on adenylylstreptomycin, a product of streptomycin inactivation by *E. coli* carrying the R-factor. J. Antibiotics 21: 477~484, 1968
- SUZUKI, I.; N. TAKAHASHI, S. SHIRATO, H. KAWABE & S. MITSUHASHI: Adenylylation of

streptomycin by *Staphylococcus aureus*: a new streptomycin adenylyltransferase. *In* Microbial Drug Resistance, *Ed.* S. MITSUHASHI & H. HASHIMOTO, pp. 463~473, Univ. Tokyo Press, 1975

- KAWABE, H.; F. KOBAYASHI, M. YAMAGUCHI, R. UTAHARA & S. MITSUHASHI: 3''-Phosphoryldihydrostreptomycin produced by the inactivating enzyme of *Pseudomonas aeruginosa*. J. Antibiotics 24: 651 ~ 652, 1971
- MILLER, A. L. & J. B. WALKER: Enzymatic phosphorylation of streptomycin by extracts of streptomycin-producing strains of *Streptomyces*. J. Bacteriol. 99: 401~405, 1969
- 5) SANO, H.; T. TSUCHIYA, S. KOBAYASHI, M. HAMADA, S. UMEZAWA & H. UMEZAWA: Synthesis of 3''-deoxydihydrostreptomycin active against resistant bacteria. J. Antibiotics 29: 978~980, 1976
- USUI, T.; T. TSUCHIYA, H. UMEZAWA & S. UMEZAWA: Transformation of dihydrostreptomycin into 3"-deoxydihydrostreptomycin. Bull. Chem. Soc. Jpn. 54: 781~786, 1981
- UMEZAWA, S.; Y. TAKAHASHI, T. USUI & T. TSUCHIYA: Total synthesis of streptomycin. J. Antibiotics 27: 997~999, 1974
- TSUCHIYA, T. & T. SHITARA: Synthesis of 3''epidihydrostreptomycin. Carbohydr. Res., 1982, under submission.